
A Numerical Survey of the Floors of Various 
Hilbert Fundamental Domains 

By Harvey Cohn 

1. Introduction. From the purely computational point of view we are consider- 
ing a real positive function S2 = f(R1, R2, Si) defined (in (3.15) below) for values 
R1, R2, and S1 varying on a parallelopiped. The function f is composed of a large 
and undetermined number (possibly thousands!) of analytic pieces. The object is to 
find the minimum of f and to estimate the number of pieces which constitute f. 
What we do is probably the easiest thing: We subdivide the parallelopiped by a 
regular three-dimensional grid and scan for min S2 as well as the number of pieces 
in the function f. 

The function f arises here in an interesting context, however, since it represents 
part of the boundary (called the "floor") of the fundamental domain R for Hil- 
bert's modular group for certain quadratic fields of unique factorization. (We 
assume some knowledge of factorization theory [1] but we sumnmarize Siegel's 
theory of these fundamental domains [2], [5], for easy reference.) It is important to 
know the minimum of S2 (and the optimal "low-point") because of applications to 
relative-quadratic fields [2, ?6], [4] and it is important to know the number of 
pieces constituting f as a clue to the topological structure of R under boundary 
identifications. 

The most important single result is the Main Theorem of ?5 (below). It states 
that among quadratic fields of unique factorization, with the only exception of the 
field of 5112, no fundamental domain of the corresponding Hilbert modular group 
can have a "simple floor" or a floor consisting of "a single piece" (if we ignore 
translates; these terms will be explained more precisely below). The proof is based 
on counterexamples which were yielded by a computational search process. 

The computer here serves as a crude instrument since it may fail to discern all 
pieces of the surface being examined or it may overestimate the "low-point" on the 
surface. Still we must not discount the possibility that a thorough round-off analysis 
could establish an error estimate for the scanning, which could be used, provided 
vast amounts of conmputing time became available. 

Grateful acknowledgment is made for the use of the CDC 3600 at the Argonne 
National Laboratories of the USAEC and for the cooperation of Dr. William F. 
Miller, director of the Applied Mathematics Division, and Mr. Burton S. Garbow, 
programmer. 

2. Summary of Theory. We consider the quadratic field K generated by k1'2 
where k is 4 square-free integer > 1 and where the field in question has class- 
number unity. We take 12 cases: 

k = 2, 3, 5, 6, 7, 11, 13, 14, 17, ..*, 21, 29, 33, ... 

We let Greek letters denote integers in K and "primed" Greek letters denote con- 
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jugates, while lower-case Roman letters denote rational integers. We let 0 denote 
the ring of integers in K; thus 0 is the set of 

(2.1) a=x+yco, CO= [(c-l) +k"]/c 

and c = 2 if k -1 (mod 4) while c = 1 otherwise. We call a totally positive (a >> 0) 
when a > 0 and a' > 0, and we let e+ (> 1) denote the fundamental totally positive 
unit. (The identification of e with the fundamental unit E0 or with c02 is shown in 
Table 1 below.) 

Consider now the bicomiiplex upper half planes U X U 

(2.2) Z = X + iY, Z' = X + iY' (Y > O, Y' > O), 

where continuous variables are denoted by capital Roman letters. The primes 
here denote formal relations so that norm N and trace S can apply equally well 
to the complex variables as to the algebraic numbers. Thus N(aY) = aa' YY', 
S(aY) aY + a'Y', etc. We call 

(2.3) || Z I= N(X2 + Y2) = (X2 + y2) (X'2 + y'2) 

and we call the height 

(2.4) h(Z, Z') = N(Y) = YY 

The Hilbert modular group H is the group of transformations of U X U onto 
itself 

(2.5) Z -* (aZ + 3)/(Z + 8), Z' -+ (a'Z' + #')/('y'Z' + 8') 

where the deterininant is a totally positive unit or 

(2.6) a6 - /3 = e >> a. 

The indicated transformations divide the space U X U into equivalence classes 
and a fundamental domain R for H is a minimal subset of U X U representing 
each equivalence class (exactly once). The choice of R is not definite but, in prin- 
ciple, one desires to have a conveniently small number of bounding (three dimen- 
sional) manifolds. The exact number is of such manifolds still unknown; all we 
show is that this number becomies quite large as k increases, according to the coin- 
putations. 

An important subgroup of H is Ho: which leaves fixed the point at oo (Z = oo, 
Z = oo ). It consists of the transformations 

(2.7) Z -Z + 3, Z' - 'Z +3' 

where e> A 0 is a unit. A fundamental doinain for Hoo is rather elementary (see 
[2, ?4]); it is seen to be given by R. which is the cartesian product of a wedge and 
parallelogram: 

(2.8) e + ? Y/Y? E, 

(2.9a) - <R <2 -R R2 < 

where we use the computationally convenient variables R1, R2 defined by 

(2.9b) X = R1 + wR2, X' = R1 co R2 . 

Of course boundary points are identified through (2.7) in obvious fashion. 
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It also can be shown that of all points in each equivalence class created by 
(2.5) there exist (several) points where h(Z, Z') is maximized. Such points are 
characterized by the fact they belong in the domain given by (see [2, ?4]), 

(2.10) Ro= n f Z: 11 Z + s + i-}, 

where y, a range over 0 but y 3d 0. A fundamental domain for H can be shown to 
be the intersection 

(2.11) R = Ro f Rw 

(with boundary points identified according to H this time). It can be further 
shown that for (Z, Z') E Ro, 

(2.12) min h (Z, Z') ) ho (k) > c2/ (2k), 

and it is actually achieved at some low point (ZO, ZO') of R (see [2, ?4]). The points 
of R which lie on some hypersurface 11 yZ + a 11 = 1 are said to constitute the 
floor of R. If for all points of the floor we can associate a ('y, 6) with y = 1, we say 
that the floor is simple, in effect this means the floor consists essentially of 1f Z ff = 

1 (and its "translates" Z -* Z + 3). 
For a point on the floor Z, we have 11 y Z + a If - 1 for some ('y, 6) but 

f1yZ + a 11 > 1 for all others (i.e., we never have 11 y Z + a 11 < 1). In many cases 
the decimal accuracy in distinguishing the inequality will be very critical. 

3. Description of Program. The floor of the fundamental domain is a three- 
dimensional set in four-dimensional space. Therefore, if we fix any point (X, X') 
or (R,?, R2) in the parallelogram (2.9ab) the floor would determine a curve C in 
(Y, Y') space. 

To parametrize C it is more convenient to introduce new coordinates Sl, S2 
analogous with R1, R2 as follows: 

(3.1) S1 = kl - (Y' - Y)/(Y' + Y) 

and, because of our interest in the height h (Z, Z'), 

(3.2) S2 = YY. 

The advantage in using S1 consists in the fact that the wedge (2.8) becomes trans- 
formed into the parallel strip: 

(3.3) -h < S1 < h 

where (recalling e+' = e+-) we see the bounds are rational: 

(3.4) h = k -2(e+_1)/(e+ + 1) (>O). 

Values of h are shown in Table 1 (see below; AS1 is presently explained in (3.14)). 
The curve C in the floor lying over each (X, X') or (RI, R2) can be parame- 

trized by the ratio Y'/Y or by S1 in the range (3.3). To see this, define 

(3.5) 4)o(Z, Z') inf 11 yZ + a, (? 0 Y E 0 E E ?). 
( X,8) 
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Clearly (Do increases monotonically in G where Z = X + GYi, Z' = X' + GY'i. 
Thus for each fixed Si there is precisely one S2 for which (Do = 1. 

Actually these functions are computationally quite reasonable. We note the 
inequalities: 

(3.6) 11 Z +a 11 > N)2 N(Y)2 

and 

(3.7a) fHlZ +8 a 1> (y'Y')2&(X + ')2, 

(3.7b) fJ'Z + all > (ey)2(,y'X' + /)2. 

Hence ||yZ + a |1 > 1 unless (by (2.12)) 

(3.8) 0 < I N ) < 2k/c2 (M) 

and 

-39- YX - y' 1- < ' < - yX + I,y'Y 1-1 (M) 
IyXI- Ir - '<-yX + Y -1. (M) (3.9) ~- ly - l7Yl'j- < '5 < - 7 I+ 1Y 

Only a finite set of "input" wy satisfies (3.8) (see Table 3 below) if we ignore 
associates of any y (values of 7y differing by a unit factor). For each y a finite set 
of a and '' are determined by (3.9) (see Remark (a) in ?8 below). The set of ad- 
missible y was worked out beforehand by hand, using factorization laws for the 
field K. These values are stored in the memory as couples (gl, 92) where zy = 

gl + 92L0. For any given Z it is no difficult task to programn a computer to run 
through all y and a satisfying (3.8) and (3.9). Call this set M. Then for practical 
purposes we are dealing, not with (D0 of (3.5) above but with the numerical7y equal 
function b (written in R1, R2, SI, S2 instead of Z, Z' for convenience), 

(3.10) 4'1(R1,R2, S1, S2) = min 11Z + ' 11' ((7,6) EM). 

Incidentally the fact that M is a finite set rnakes the "inf" of (3.5) an actual 

TABLE 1 

Range of S1 

k Eo e+ h AS1 

2 1 + 21/2 C02 1 .2 
3 2+31X2 eo 1 .2 
6 5 + 2.61/2 Eo 2 . 1 
7 8 + 3.71/2 Eo X .333-*. 

11 10 + 3.111/2 o 3 .3 
14 15 + 4.141/2 so j .35 

5 2(1 + 51/2) 02. 1 .2 
13 2(3 + 131/2) eo2 3 .3 
17 4 + 171/2 eo2 4 .5 
21 2(5 + 211/2) e6 3 .3 
29 2(5 + 291/2) 602 5 .5 
33 23 + 4.331/2 60o 121 .55 
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minimum. (It also assures us that infinitely many different boundary surfaces 
"1/ YZ + a 1 = 1" will not accumulate near a point Z, Z' as long as Y > 0, 
Y' > 0.) The machine does keep track, additionally, of the last ('y, 8) which pro- 
du,ces the minimum in (3.10), for later purposes of output. 

We can finally calculate the curve C lying over (R1, R2) (or (X, X')) by solv- 
ing for S2so that the floor is now given by one "finitaxy" equation: 

(3.11) (Di(R1, R2, S1, S2) = 1. 

By virtue of the earlier remarks (see (2.12)) there is a unique solution 

(3.12) 2/(c2k) < S2 1 

and this value of S2 can be found by a bisection process on S2 in the interval (3.12). 
designed to cut off when 1 b1 - 1 < E a preassigned value (see Remark (b) of 
?8 below). As a check on accuracy, the machine prints out the difference "error 
S2" between the last two approximations to S2 (by bisection). In practice with 
E = .001, usually "error S2" < .01. 

Now consider the inverse of (3.11) as S2 = f(R1, R2 , Si). For this functiotn, 
it is easily seen that if k 0 1 (mod 4) there is complete "4Ri and +R2 symmetry." 
This follows from the fact that we can change X and X' to -X and -X' while 
we can interchange X and Y with X' and Y'. (If k 1 (mod 4) the symmetry is 
not reflected in R1 and R2 both, e.g., only "symmetry about the origin" can be 
used.) Thus we search the following parallelopiped: 

-.5 < R, < 0 in N, steps of AR1 (AR1 = .1, N1 = 6), 
(3.13) -.5? R2 ?0 inN2stepsof AR2 (AR2 = .1,N2 = 6), 

(3.14) -h < Si ? h in N3 steps of AS, (Table 1). 

(We use -.5 ? R2 ? .5 if k 1 mod 4 since we lack one of the symmetries.) 
Here AR1, AR2, AS, are part of the input data as well as the numbers NI1, N2, 
N3 of steps (and of course the starting values -.5, -.5 and -h). 

The output represents essentially the floor as determined by inverting (3.11) 
to obtain 

(3.15) S2 = f(R1, R2, Sl) 

it consists of the sequence of N1N2N3 "points" in 13 columns: 

(3.16) R1,R2,S1,S2, X,X' Y, Y, g1,g2,di,d2, (errorS2) 

given in decimal form (to four places). By scanning the data one could easily spot 
low points as small values of S2. The values of y = 91 + w92 and 8 = di + Wd2 
are printed to correspond to the last value of ('y, 8) E M arising (in finding 82) for 
which 4D takes its minimum. This way, if we are dealing with a nonsimple floor we 
should find 'y $ 1 or (g1, g2) # (1, 0). More will be said about the output of ('y, 5) 
later on (see Table 3 below). 

4. Study of Case k = 6. To illustrate the main run for a typical case take k = 6. 
Here the function of (3.14), S2 f(R1, R2, SI) is calculated for the following 
1476 = 6*6-41 points 
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-.5? R1 ?0, AR, = .1 (6 values), 

-.5< R2 ? , AR2 = .1 (6 values), 

-2 Si _ 2, AS = .1 (41 values). 

Let us concentrate on each curve C which lies over (R1 A R2). It is represented 
by 41 points (Sl, S2) which in turn lie on a (variable) number of hypersurfaces 

I'l IYZ + 6 1= 1". For example, when R1 - -.3 and R2 = -.4, the print-outs 
reveal that C consists of five analytic pieces lying on the following hypersurfaces: 

|| Z-1 = 1 for -2.0 S1i -1.7, 

(3 + 6"/2)Z + (2 + 61/2) = 1 for -1.6 ? S: ? -1.0, 

2 + 6"12)Z + (3 + 61/2) 11=1 for -.9 < S1 5 1.0, 

|| Z + 1 1 for 1.1_ Si < 1.9, 

1Z -1 + 61/2 1 for 2.0-Si . 

The values of S2 vary, generally displaying several relative mininma for the range 

-.4 -.3 -.2 -.1 0 / 
/R2 - 

A A A A A A 0 

.33 .47 .64 .81 .95 1.00 
A A A A A 

* * * * * 

.40 .38 .52 .70 .86 
A A A A A A -.1 

.69 .50 .33 .41 .57 .74 
A A A A A 

.68 .61 .41 .41 .45 
A A A A A A -.2 

.62 .63 .61 .51 .31 .41 
A A A A A 

.56 .55 .49 .45 .35 
A A A A A A -.3 

.45 .46 .45 .36 .28 .40 
A A AB ABC AB 

.34 .33 .27 .31 .34 
AB AB ABC AB AB AB -.4 

.25 .20 .26 .32 .39 .43 
ABD ABC AB AB AB 

.24 .26 .36 .42 .46 
ABD AB AB AB AB AB -.5 

.25 .29 .37 .44 .48 .50 

FIG. 1.-Value of min S2 as Si varies for fixed values of RT and R2 (between -.5 and 0) 
on the lower left-hand quadrant. 
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of Si ; indeed S2 increases from .260 at S =- 2 to .529 at Si = 1.7 finally de- 
creasing to .499 at Si = 2 (ignoring minor fluctuations). In Figure 1 we indicate 
the minimum (computed) value of S2 over the range -2 ? Si ? 2 as a function 
of R1 and R2 alone, i.e., we indicate the minimum value of S2 on C for each of 36 
(R1, R2). In order to give a better picture of how this minimum varies, we also 
calculate the values at the 25 mid-points of the squares by a supplementary com- 
putation. 

Moreover, to obtain some idea of how complicated the "piecing" of hypersur- 
faces becomes, in Figure 1, we denote by 

A the presenice of N('y) I=1, 

B the presence of I N(') I=2, 

C the presence of IN('y) I = 3, 

D the presence of I N(y) I = 4 

among the liypersurfaces I 7yZ + aII = 1 occurring over (R1, R2). Thus the last 
point, R1 = -.3, R2 = -.4, bears the information "ABC, .26", etc. We see that 
"D" occurs only twice, in the lower left-hand corner. Clearly, we can fail to find 
hypersurfaces by round-off error as well as by using a grid which is not sufficiently 
fine, so that we must regard results of this nature as tentative and unreliable indi- 
cations of a minimum degree of complication. (Of course, several different 6 can 
occur with each y but they are not distinguished here.) 

Finally, the low-point suggested by Figure 1 is 

(4.1 ) R, -4; R = -.4 , R SI -1, S2= .2 

or, in the original coordinate, 

Z = -. (1+ 61/2) + (1 + 61/2), 

(4.2) 
z( -2 (1- 61/2) + (-1 + 61). 55 

Subsequent exploration with a finer grid seems to justify the conjecture that (4.1) 
or (4.2) is the low-point (see Remark (c) in ?8 below). 

5. Nonsimplicity Theorem. We now examine the output data to see where 
,y $ 1. This is a necessary condition for a nonsimple floor (but not a sufficient one 
since we can have the coincidental occurrence II yZ + 6 Z + 61 = 1, i.e., 
the boundary point Z can lie on two boundary surfaces at once). 

Our attention is immediately drawn to the special values R1 = 0, R2 = -1/2, 
for which the (floor) output shows -y $ 1 (except when k = 3 or 5). The values 
of Si and S2 are not always the same but for simplicity we consider the point Z* 
corresponding to Si = 0 and S2 = 1/4 or 

(5.1) =Z* 2(-W + i), Z! _ (-w' + i). 

Now Z* does not generally lie on the floor, but still 
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(5.2) 11 2Z* + c 11 - 1. 

We shall soon try to see if for all 6 E 0 the following holds for Z = Z* 

(5.3) JJZ+6JJ > 1. 

From (5.2) it follows that in (3.11) 411(O, -1/2, 0, 1/4) ? 1. Thus if S2' is the 
root of 41(0, - 1/2, 0, S2') = 1, it follows that S2' _ 1/4 and (5.3) still holds for 
the point of the floor corresponding to this root. Hence, (see [2, ?81) there is no 
hypersurface of type (5.3) on the floor at R1 = 0, R2 = - 1/2, S1 = 0, S2' (_ 1/4). 

Actually to demonstrate (5.3) for Z = Z*, consider its negation, 16 11 Z* + 

? 11 < 16. This can be expanded as 

(5.4) ( 2 + 1) (t2 + 1) ? 16 

where a = 26 - c, which is irrational when 3 varies in 0. Clearly (5.4) provides 
a bound on I a I and I a' I hence only a finite number of quadratic fields can pernmit 
the inequality (5.4). A quick check reveals the only counterexamples satisfying 
(5.4) and a X (mod 2) are 

(1 +51/2) (3 + ) 1/2 

+21/2 112 3 1/2, + 13/2) 

Therefore, the only cases to check are k = 5, 2, 3, 13. Actually k = 5 is easily 
disposed of as simple from (3.8) since in K, I N (-y) I = 1 or > 4. To dispose of 
k = 2, 3 and k = 13 we search the outputs again and we obtain the following 
counterexamples by trial and error: 

k = 2. Let 

Z* = 212 + i, z 21 + 

Thus 11 21/2Z* + 1 = 1 while if 3 = n + n2112, then 

1Z Z* + 3f I (m + [n - fJ21"2)2 + 1} (m - [n - ]21/2 )2 + 1}. 

But 1 Z*+11 ? 1 only if IM2 - 2(n- 1)2 < 1 or if (2n - 1) + m2/2 is a 
unit. Then trying units, we find 11 Z* + 311 > 9/8 > 1 for a E 0. 

k = 3. Let Z* (- 4 - 5.31/2 + 7i)/10, Z*' = (-4 + 531/2 + 7i)/10 (not 
an easy point to conjecture but it appeared on the print-outs with oy 1 + 31/2 

3 = 2 + 31/2)? Here 

11 (1 + 31/2)Z* + (2 + 31/2) II _ (1 + 31/2) (1 + 7i)/10 = 1. 

Meanwhile, after somewhat more labored calculation we verify 

11Z* + a5 f 7 > 1 for c E 0. 

k = 13. This case resembles k = 2 (see Remark (d) of ?8 below). Let 

Z* - + i, Z* -2 +4 (=2 [1 + 13/2]). 
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Thus 11 2Z* + coJJ = 1 while with 6 = m + nc we note that 1 Z +a11 >1 
unless, with X = 2m + (2n - 1)w, I N(X) I ? 4. But if N(X) = 441, :t;3, since 

Z + a jj.> (X/8)2 + (X'/2)2 we reduce our choice (by max I X I, I < 8) to X = 
-13"')/2, A:(1 + 13112)/2, :?(5 + 131/2)/2; (recall X e mod 2). By a 

close margin, again, 

|| Z* + 8 | (806 -150 N/13)/256 = 1.03*** > 1(!). 

MAIN THEOREM. The only quadratic field of class number unity with a simple 
floor for the Hilbert fundamental domain is the field of 51/2. 

In completing this proof, we did not depend on the print-outs, but we verified all 
inequalities rigorously. In what follows we shall depend on the print-outs because 
of the amount of labor involved in verifying even a single (print-out) S2. 

6. Low-Points. We first inspect the print-outs in order to conjecture the mini- 
mum value of S2. (A more difficult job, of course, is to invent some justification 
for the conjectured minimumi.) In certain cases, k = 2, 3, 5, 6, 13 a reasonable 
conjecture could be made from this and earlier work ([2], [31). In other cases, 
k = 11, 21, 29, 33 no "exact" conjecture seems available so we content ourselves 
with repeating the decimal values in the output. In still other cases, however, 
k = 7, 14, 17, we can "explain" the minimum output but without sufficient con- 
viction to justify a conjecture that this value is the low-point. 

A frequent situation for some K is where the output produces SI = 0, or Y = 
Y' (= Yk). Then the precise value of Yk is determined by the condition 

(6.1) l lZ + a 11 = [(YX + 8)2 + y2yk2][(l&X' + 81)2 + 'Y2Yk2] = 1 

drawn from the output values of y and B. Then S2 = Yk2. This happens for k = 
2, 3, 7,13,14,17. 

The relevant information is collected in final form in Table 2. In each case, the 

TABLE 2 
Pos8ible Low-Points 

(ck1)1 Z, Z| ('Y, 5) h(Z, Z')' 

2 - 1(1 + 21/2) + iY2 - (1 21/2) + iY2 (1, o) .475... 
3 j(-31/2 + i), j(3'112 + i) (1, 0) .25 
6 *(1 + 61/2)(-2 + i), j(1 - 61/2)(-2 - i) (1, 0) .20 
7 - 1.71/2 + iY7, 1.71/2 + iY7 (3 + o, 2 + 0) .45 . 

11 -1.5266 + i .0804, 1.1266 + i 1.6034 (2 - o, -2) .129... 
14 - Ai- ̂  141/2+Ai, -i+ TA.l41/2+ Ai (4 + o, 11 + 3w) .09 

(c = 2)2 

5 j(-w + i[-51/2C1]T/2), j(-Co' + i[51/2C]1/2) (1, 0) .559... 
13 - io + i/2, - io' + i/2 (2, o) .25 
17 -1%- + iYl7, .- A -s +t iY7 (2-o,-o) .405 
21 - 1.6956 + i .2014, .5956 + i .8639 (co, 2 + o) .174- * 
29 -1.5232 + i 2.2059, .5232 + i .0818 (2, 1 + o) .180... 
33 .0372 + i 1.8059, -.5372 + i .1342 (1, 0) .242..- 

1 Recall o = k1/2 and o' = -k1/2 for c = 1 and o = (1 + k1'2)/2, ' = (1- kl2)/2 for 
c = 2. 

2 For k = 2, 7, 17, h = Yk2 where Y22 a (2.61/2 - 3)/4, Y72 = (10.21/2-8)/25, Y17 - 
(5. 4171/2 - 21)/200. 
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output values of y and 8 are listed in Table 2 for the reader's convenience in re- 
constructing the optimum, (but naturally, several distinct (y, 8) may be equally 
capable of producing II yZ + 8 jJ = 1). 

7. Bounding Surfaces. We now return to the question of how complicated the 
floor of the fundamental domain R really is. In every sense, we are establishing a 
minimum level of complexity, since our grid may not be fine enough to catch all 
hypersurfaces which make up the floor. 

Let us look at the floor, however, in terms of zones. Let us define Zy,a (for 
,y 0) the (,y, 8)-zone as the set of (Z, Z') in U X U for which 

(7.1) jj7Z+ 68 -< j jY(Z+P) +861 

for every p E 0. Then the portion of the floor lying on 11 yZ + 8 = 1 can be 
translated (by p) so as to lie on Z,,a . In a sense, then, the simplest possible descrip- 
tion of the floor would consist of the enumeration of the values of the residue classes 
a (mod y). The translations (by p) involve an additional consideration of complex- 
ity which we thereby ignore. 

We list the values of 8 (mod -y) in Table 3 omitting the case y = 1 (8 = 0), 
which always occurs (since the point Z = i, Z' = i must necessarily lie on the floor 

TABLE 3 
Analytic Segments of the Floor: I 7Z + 6 12 I y'Z, + 61I2 - 1 

Input Output 
k 

(c 1) max 
( (where I N(&y)I < 2k/c2) 6 (mod y) (excl. y = 1) N Nay) 

2 1, 21/2 1 (mod 21/2) 2 
3 1, 1 + 31/2, 31/2, 2 1 (mod 1 + 31/2) 2 
6 1, 2 + 61/2, 3 + 61/2, 2, 1 dE 61/2, 61/2, 1 (mod 2 + 61/2); -i: (mod 3 + 61/2); 4 

4 + 2.61/2 3, 4 ? 61/2 1 + 61/2 (mod 2) 
7 1, 3 + 71/2, 2 :1: 71/2, 2,1 4 71/2, 71/2, 1 (mod 3 + 71/2); d1 (mod 2 4t 71/2); 4 

6 + 2.71/2, 3, 4 E 71/2, 4 L 2.71/2 1, 71/2 (mod 2) 
11 1, 3 + 111/2, 2, 4 4 111/2, 2 4 111/2, 1 (mod 3 + 111/2); 1, 141/2 (mod 2); 7 

6 + 2.111/2, 3, 111/2, 4, 9 + 3.111/2 4-1, d2 (mod 4 4 111/2); 4t2, 4t3 
(mod 2 4 111/2) 

14 1, 4 + 141/2, 2, 3 i 141/2,7 + 2.141/2, 1 (mod 4 + 141/2); 1, 1 + 141/2 (mod 10 
8 + 2.141/2, 3, 2 4 141/2, 5 4 141/2, 2); 4t2 (mod 3 d= 141/2); 43 (mod 
1 1 141/2, 141/2, 4, 12 + 3.141/2 2 4- 141/2) 

6 t 2.141/2 

(c = 2) 

5 1 ..1 
13 1, -1[1 4z 131/21, 2 -[1 + 131/2] (mod 2); 11 (mod 3 

21[1 =L 131/2]) 
17 1, 2[3 4t 171/21, 2, 1[1 1L 171/21, 3 4t 1 (mod M[3 4t 171/21) 2 

171/2, [7 4- 171/21 
21 1, M[3 + 211/21, 2, A[1 4 211/21, 4i1 (mod [3 + 211/2]); [1 4 211/21 5 

k[7 + 211/2], 3 (mod 2); 4t2 (mod [1 i 211/21) 
29 1, 2,[34t291/2],M[1429'/21,3, 1, M1 = 291/21 (mod 2); d2 (mod 5 

2L9 ? 291/2] 21[3 -i 291/2]) 
33 1, 1[5 4 331/21, 6 + 331/2, [7 4- 331/21, 1 (mod '[5 d: 331/21) 2 

2, 1[3 4t 331/21, 4[1 :I_ 331/2], 5 ? 
331/2, 3, 11 + 2.331/2, 12 + 2.331/2, 

?[9 4t 331/2], 4, 7 4? 331/2 
'[41 i 7.331/2] 
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only on hypersurface 11 Z 11=1). In several cases the values of 6 (mod 'y) were also 
drawn from supplementary runs which were made to explore the neighborhoods of 
the low-points in Table 2. 

We do take symmetries (X +-+ -X, X' -+ -X') and (Z *-* Z') into account, 
so that for every a (mod y) occurring, -5 (mod -y) and i6' (mod 'y') are also 
present; they are listed separately insofar as 6 $ -6 (mod -y) and y and y' are 
nonassociated, etc. 

There are 12 "pieces" present (and translates) e.g., for k = 14 (i.e., 12 residue 
classes 6 mod y including -y = 1). There is no reason to be sure that any listing is 
complete but we might feel relatively sure of the smaller k. At any rate, an actual 
count of output pairs ('y, 5) for k = 5 yields 7 different pairs (,y, 5) for the simple 
floor; namely, -y = 1 and a = 0, :?1, 2 (4-1 i 51I2). By contrast, an actual count 
of output values for k = 14 yields 51 pairs (y, 6) belonging to the 12 "pieces" (and 
39 translates). 

8. Concluding Remarks. (a) In calculating a and 6' from (3.9), the procedure 
used is to note that if 6 = di + d2co and 5' = d1 + d2co' then di= 022(5, 65) and 
d2 = P2 (d, 6') by just solving linear equations. Hence, if a, < 6 < 62 and S1' < 65 < 
62', it is clear that 

(8.1) 'i (bi ) 5i < d1 < I1(62 ,52), 2(61 , 62 ) < d2 < #2(62 ,) ). 

Thus to explore the range (3.9) it is only necessary to explore the range (8.1) for 
integers d1 and d2 . 

(b) To avoid losing a value of di or d2 by round-off errors, the computer arti- 
ficially rounds up (or down) by actually using not (8.1), but 

(8.2) -.01 + '1,(61, 5kb) _ di ? +.01 + #10(2, 52'), etc. 

Likewise, equation (3.12) is interpreted as 2/c2k' _ S2 < 1.1, partly to make al- 
lowance for the cases (R1 = 0, R2 = 0) where S2 1 theoretically. 

(c) We are constantly being reminded of our dependence on the "decimal 
world". By an undeserved stroke of luck, the conjectured low point for k = 6 
(see Table 2) appears as the print-out 

Ri = -.4, R2 = -.4, Si= -1.0, S2 = .2005 (calc.). 

Here R1, R2, Si falls in our scanning range (3.13) since AR1, AR2, and ASI were 
taken as .1 for lack of any more inspired choice. Likewise the counterexample (in 
?5) for the nonsimplicity proof for k = 3 is a fortunate result of "good decimal" 
choices for AR1, AR2, and AS1. 

(d) In the counterexamples of ?5 for k = 2 (or k = 13) the printouts suggest 
that Z = -2w + iY and Z - -kyt + iY' will do for a range or values of Y and 
Y' not too far from the ones attempted; e.g., Y = 1 and Y'-2 (or 1 aslong) as YY' = 

2 (or 4). The printouts do not suggest a reason for any freedom for Y and Y' in 
the choice of counterexamples. 

The actual computing time was roughly 250 points/minute and this includes, 
on the average, 6 bisections for the location of S2 . The running time seemed largely 
independent of the number of input values y (which varied from 1 when k = 5 to 
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23 when k = 33). This may be partly due to the fact that the high internal speed 
makes the output (to tape) a lengthly process causing some stability (in the ratio 
of 250 points/minute). Meanwhile, for many input values of y, the inequalities 
(3.9) provide no value of 6 to test. The time for the total computation was roughly 
one hour spread over several weeks in July and September, 1964. 
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